The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel interference(86hit)

41-60hit(86hit)

  • Adjacent Channel Interference Cancellation Scheme for Low-IF Receiver in Multi-Channel Reception

    Anas Muhamad BOSTAMAM  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2532-2538

    In this paper a new adjacent channel interference (ACI) cancellation scheme for multi-channel signal reception with low-IF receivers is investigated through the experiment. In the low-IF receivers, the signal in the mirror frequency causes interference to the desired signal. In the proposed analog-digital signal processing scheme, channel selection is made by analog complex band pass filter and the signal is reconstruct by Wiener filter to eliminate the interference effect in order to improve the performance.

  • Recursive Decoding for OFDM Systems with Multiple Transmit Antennas

    Jaekwon KIM  Joonhyuk KANG  Won-Young YANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2664-2667

    In this letter, we propose a recursive space time decoding method for orthogonal frequency division multiplexing (OFDM) systems exploiting multiple transmit antenna diversity when the channels are fast fading. We first develop a computationally efficient space-time decoding method involving a matrix inversion to mitigate the channel variation effect. We then further reduce the computational complexity of the matrix inversion decoding method via a recursive formulation. Computer simulation results show that the proposed recursive decoding has much better BER performance than Alamouti decoding, requiring much less computation than the matrix inversion decoding. Moreover, the relative advantage in BER performance of the proposed scheme over Alamouti decoding stands out as the Doppler frequency increases.

  • Performance of a Base Station Feedback-Type Adaptive Array Antenna with Mobile Station Diversity Reception

    Jeongkeun CHOI  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2081-2086

    In the cellular mobile communication systems, co-channel interference and Rayleigh fading degrade the transmission performance. Adaptive Array Antenna (AAA) can suppress interference and, at the same time, can cope with multi-path fading by using a wide antenna spacing resulting in low correlation of received signals in each antenna element. A feedback-type AAA was proposed for frequency division duplexed (FDD) systems, where mobile station measures channel characteristics and feed-backs them to the base station. In this paper, we extend the system by introducing 2-branch diversity reception at a mobile station, and study the influence of antenna element spacing at the base station and control delay time on bit error rate performance under a realistic propagation model.

  • Novel Techniques to Reduce Performance Sensitivity to Spatial Correlation and Timing Offset in Space-Time Coded MIMO Turbo Equalization

    Nenad VESELINOVIC  Tadashi MATSUMOTO  Christian SCHNEIDER  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:4
      Page(s):
    1594-1601

    Spatial correlation among antenna elements both at transmitter and receiver sides in MIMO communications is known to have a crucial impact on system performances. Another factor that can severely degrade receiver performances is the timing offset relative to the channel delay profile. In this paper we derive a novel receiver for turbo MIMO equalization in space-time-trellis-coded (STTrC) system to jointly address the problems described above. The equalizer is based on low complexity MMSE filtering. A joint detection technique of the several transmit antennas is used to reduce the receiver's sensitivity to the spatial correlation at the transmitter and receiver sides. Furthermore, only the significant portion of the channel impulse response (CIR) is taken into account while detecting signals. The remaining portion of CIR is regarded as the unknown interference which is effectively suppressed by estimating its covariance matrix. By doing this the receiver's complexity can be reduced since only a portion of the CIR has to be estimated and used for signal detection. Furthermore, by suppressing the interference from the other paths outside the equalizers coverage the receiver's sensitivity to the timing offset can be reduced. The proposed receiver's performance is evaluated using field measurement data obtained through multidimensional channel sounding. It is verified through computer simulations that the performance sensitivity of the joint detection-based receiver to the spatial correlation is significantly lower than with the receiver that detects only one antenna at a time. Furthermore, the performance sensitivity to the timing offset of the proposed receiver is shown to be significantly lower than that of the receiver that ignores the existence of the remaining multipath CIR components.

  • Spatio-Temporal Equalization for Space-Time Block Coded Transmission over Frequency Selective Fading Channel with Co-channel Interference

    Xuan Nam TRAN  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    660-668

    In this paper, we propose a spatio-temporal equalizer for the space-time block coded transmission over the frequency selective fading channels with the presence of co-channel interference (CCI). The proposed equalizer, based on the tapped delay line adaptive array (TDLAA), performs signal equalization and CCI suppression simultaneously using the minimum mean square error (MMSE) method. It is to show that our scheme outperforms the previous two-stage combined adaptive antenna and delayed decision feedback sequence estimator (DDFSE) approach. We also show that performance can be further improved if the synchronization between the preceding and delayed paths is achieved.

  • Subcarrier Clustering in Adaptive Array Antenna for OFDM Systems in the Presence of Co-channel Interference

    Hidehiro MATSUOKA  Yong SUN  

     
    PAPER-Wireless Network System Performances

      Vol:
    E87-C No:9
      Page(s):
    1477-1484

    For future high-speed wireless communications using orthogonal frequency division multiplexing (OFDM), two major system requirements will emerge: throughput improvement and rich interference elimination. Because of its broadband nature and limited frequency allocations worldwide, interference from co-located wireless LAN's operating in the same frequency band will become a serious deployment issue. Adaptive array antenna can enhance the performance by suppressing the co-channel interference even when interference may have a large amount of multipath and also have similar received power to the desired signal. There are typically two types of adaptive array architecture for OFDM systems, whose signal processing is carried out before or after FFT (Fast Fourier Transform). In general, the pre-FFT array processing has low complexity, but in rich multipath and interference environments, the performance will deteriorate drastically. In contrast, the post-FFT array processing can provide the optimum performance even in such severe environments at the cost of complexity. Therefore, complexity-reduction techniques combined with the achievement of high system performance will be a key issue for adaptive array antenna applications. This paper proposes novel adaptive array architecture, which is a complexity-reduction technique using subcarrier clustering for post-FFT adaptive array. In the proposed scheme, plural subcarriers can be clustered into a group with the same spatial weight. Simulation results show that the proposed architecture is a promising candidate for real implementation, since it can achieve high performance with much lower complexity even in a rich multipath environment with low signal to noise plus interference ratio (SNIR).

  • Inter-Channel Interference Analysis in STBC OFDM-CDMA Systems

    Intae HWANG  Jungyoung SON  Sukki HAHN  Young-Hwan YOU  Daesik HONG  Changeon KANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E87-B No:5
      Page(s):
    1417-1420

    Rapid time variations of the mobile communication channel have a dramatic impact on the performance of multicarrier modulation. This letter analyzes the effect of the Doppler-induced interchannel interference (ICI) on a space-time block coded (STBC) OFDM-CDMA system in a time-varying Rayleigh fading channel. At the same time, we compute the effect of the ICI on the BER performance of the STBC OFDM-CDMA system using the maximal ratio combining (MRC) and equal gain combining (EGC) schemes.

  • A Low Cost Reconfigurable Architecture for a UMTS Receiver

    Ronny VELJANOVSKI  Aleksandar STOJCEVSKI  Jugdutt SINGH  Aladin ZAYEGH  Michael FAULKNER  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3441-3451

    A novel reconfigurable architecture has been proposed for a mobile terminal receiver that can drastically reduce power dissipation dependant on adjacent channel interference. The proposed design can automatically scale the number of filter coefficients and word length respectively by monitoring the in-band and out-of-band powers. The new architecture performance was evaluated in a simulation UTRA-TDD environment because of the large near far problem caused by adjacent channel interference from adjacent mobiles and base stations. The UTRA-TDD downlink mode was examined statistically and results show that the reconfigurable architectures can save an average of up to 75% power dissipation respectively when compared to a fixed filter length of 57 and word length of 16 bits. This power saving only applies to the filter and ADC, not the whole receiver. This will prolong talk and standby time in a mobile terminal. The average number of taps and bits were calculated to be 14.98 and 10 respectively, for an outage of 97%.

  • Approximate Error Probability of M-Ary PSK for Optimum Combining with Arbitrary Number of Interferers in a Rayleigh Fading Channel

    Jin Sam KWAK  Jae Hong LEE  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:12
      Page(s):
    3544-3550

    This paper presents the approximate error rates of M-ary phase shift keying (MPSK) for optimum combining (OC) with multiple interferers in a flat Rayleigh fading channel. The approximations, which have been used to evaluate the performance of binary PSK for OC, are extended to the performance analysis of MPSK for OC in the presence of arbitrary numbers of antennas and interferers. The mean eigenvalues of interference-plus-noise covariance matrix are analyzed to compare the approximation techniques, i.e., first-order approximation and the orthongal approximation. Using the moment generating function (MGF)-based method, the approximate error rates of MPSK for OC are derived as the closed-form expressions in terms of the exact error rates of MPSK for MRC. The approximate analytical results show the simple and accurate way to assess the average symbol error rate of MPSK for OC with arbitrary numbers of antennas and interferers.

  • Turbo Receiver for OFDM Signals with Interchannel Interference

    Alexander N. LOZHKIN  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:8
      Page(s):
    2395-2413

    With the growing demand for mobile communications, multicarrier (MC) schemes are receiving an increasing amount of attention, primarily because they handle frequency selective channels better than ordinary single-carrier schemes. However, despite offering several advantages, MC systems have certain weak points. One is a high sensitivity to interchannel interference (ICI). Using a Markov chain approach, we synthesized an optimal receiver for a situation where interference affects three adjacent subchannels. Simulation results showed that the proposed 'turbo scheme' provided better BER performance than a conventional receiver, especially at higher signal-to-noise ratios. The implementation of the turbo algorithm is independent of the transmitted signal, providing complete OFDM reception compatibility.

  • Synchronous Optical Fiber Code-Division Multiple-Access Networks Using Concatenated Codes for Channel Interference Cancellation

    Pham Manh LAM  Keattisak SRIPIMANWAT  

     
    PAPER-Communication Theory and Signals

      Vol:
    E86-A No:7
      Page(s):
    1835-1842

    The use of concatenated codes in non-coherent synchronous optical fiber CDMA networks is proposed. The concatenated code sequences are generated using Walsh code sequences and balanced Walsh code sequences, which are selected from Walsh code sequences. The selection of balanced Walsh code sequences is presented and the design of fully programmable electro-optical transmitter and receiver is reported. In the proposed network, sequence-inversion keying of intensity modulated unipolar concatenated code sequences is employed at the transmitter and unipolar-bipolar correlation is implemented at the receiver. The analysis of the system BER performance is presented and it is proved that multiple-access interference is completely eliminated. It is also shown that the BER performance of the proposed system is better than that of non-coherent synchronous optical fiber CDMA system using optical orthogonal codes with double hard-limiters.

  • Dynamic Channel Assignment and Reassignment for Exploiting Channel Reuse Opportunities in Ad Hoc Wireless Networks

    Chih-Yung CHANG  Po-Chih HUANG  Chao-Tsun CHANG  Yuh-Shyan CHEN  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1234-1246

    In Ad Hoc networks, communication between a pair of hosts uses channel resources, such that the channel cannot be used by the neighboring hosts. A channel used by one pair of hosts can be reused by another pair of hosts only if their communication ranges do not overlap. Channels are limited resources, accounting for why exploiting channel reuse opportunities and enhancing the channel utilization is essential to increasing system capacity. However, exploiting channel reuse opportunities may cause a co-channel interference problem. Two pairs of communicating hosts that use the same channel may gradually move toward to each other. A channel reassignment operation must be applied to these hosts to maintain their communication. This investigation presents a channel assignment protocol that enables the channel resources to be highly utilized. Following this protocol, a channel reassignment protocol is also proposed to protect the communicating hosts from co-channel interference caused by mobility. The proposed reassignment protocol efficiently reassigns a new available channel to a pair of hosts that suffers from co-channel interference. The performance of the proposed protocols is also examined. Experimental results reveal that the proposed protocols enable more hosts to communicate simultaneously and prevent their communication from failing.

  • Effects of Impulsive Noise and Self Co-channel Interference on the Bluetooth Scatternet

    Do-Gyun KIM  Jae-Sung ROH  Sung-Joon CHO  Jung-Sun KIM  

     
    LETTER

      Vol:
    E85-B No:10
      Page(s):
    2198-2202

    The objective of this paper is to evaluate the impacts of impulsive class-A noise, co-channel interference due to other piconet, Rician fading on the packet error rate (PER), and throughput performance in the Bluetooth scatternet. Simulation results illustrate the significant difference in performance between synchronous and asynchronous Bluetooth systems. The paper also provides the insights on how to design Bluetooth scatternet for minimal PER and maximum throughput performance.

  • Theoretical Derivation Method of Bit Error Rate in TDMA/TDD Transmitter Diversity under Cochannel Interference

    Fumiaki MAEHARA  Fumihito SASAMORI  Fumio TAKAHATA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:3
      Page(s):
    663-666

    Transmitter diversity is a powerful technique to improve the transmission quality of downlink in microcellular mobile communications systems. Under cochannel interference (CCI) at the base station (BS), the transmitter diversity is not necessarily effective, because the desired-plus-interference signal power used as a criterion of downlink branch selection is not always relative to the downlink propagation condition. This paper proposes the theoretical derivation of bit error rate (BER) performance in the transmitter diversity under CCI occurring at BS, as parameters of average SIR at BS, normalized Doppler frequency, and so on. It is confirmed from the correspondence of theoretical results with simulation results that the proposed theoretical approach is applicable to the CCI environments at BS.

  • New Derivation Method of BPSK Bit Error Rate Performance in Cochannel Interference

    Fumiaki MAEHARA  Tomoaki SAITO  Fumio TAKAHATA  

     
    LETTER-Wireless Communication Technology

      Vol:
    E84-B No:9
      Page(s):
    2701-2704

    New method for deriving the bit error rate (BER) of the BPSK signal in the cochannel interference is proposed, which utilizes the eye pattern of the interference signal, and is different from the conventional method based on the conversion of the interference components to thermal noise. The validity of the proposed derivation method is quantitatively evaluated in terms of the BER performance and is confirmed by comparing with the results obtained by the computer simulation.

  • A CMA Adaptive Array Antenna System with a Single Receiver Using Time-Division Multiplexing

    Eimatsu MORIYAMA  Yukiyoshi KAMIO  Kiyoshi HAMAGUCHI  Hiroshi FURUKAWA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E84-B No:6
      Page(s):
    1637-1646

    We describe a simplified receiver structure having several receiving antennas (i.e., an adaptive array antenna system) and using time-division-multiplexing (TDM) signal processing. Three simplified receiver structures were investigated for use in the antenna system. To confirm the feasibility of using a TDM receiver, both a TDM receiver and a conventional adaptive array receiver were constructed for testing. In our proposed system, several repetitions of the constant modulus algorithm (CMA) are used to reduce co-channel interference (CCI). The frame format used for both receivers was the same as that of the personal handy phone system in Japan. The laboratory testing was done using a fading simulator to enable measurement of the bit error rate. The results are very promising and show the feasibility of the TDM receiver.

  • Uniquely Decodable Code for Two-User Multiple-Access Channel Using Complex-Valued Signal

    Yuan LI  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Fundamental Theories

      Vol:
    E84-B No:3
      Page(s):
    581-588

    This paper discusses a communication system with a multiple-access channel where two users simultaneously send complex-valued signals in the same frequency-band. In this channel, ambiguity in decoding occurs when receiver trying to estimate each users' signal. In order to solve the ambiguity problem, a family of uniquely decodable code is derived in this paper. The uniquely decodable code is designed by using trellis-coded modulation (TCM) pair where the trellis structure of one TCM is a transformation of the other in the pair. It is theoretically proved that, with the proposed coding scheme, the composite received signal can be uniquely decomposed into the two constituent signals for any power ratio and any phase difference between the received two users' signals. Improvement of BER performance over non-uniquely decodable code is illustrated by computer simulation.

  • Experimental Evaluation of Interference Canceling Equalizer (ICE) for a TDMA Mobile Communication System

    Hitoshi YOSHINO  Hiroshi SUZUKI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:2
      Page(s):
    228-237

    This paper describes the results of a series of laboratory experiments for performance evaluations of our proposed Maximum Likelihood Sequence Estimation (MLSE) based interference canceller, the Interference Canceling Equalizer (ICE), which can cancel both co-channel interference (CCI) and inter-symbol interference (ISI). To verify the feasibility of ICE for the Japanese cellular communications system, a standard of which has been released under the name of Personal Digital Cellular (PDC) system, a prototype system was constructed using 27 TI TMS320C40 Digital Signal Processor (DSP) chips. The ICE prototype works in real-time on the PDC air interface, major specifications of which are π/4 QDPSK 21 k symbols/s 3-channel time-division multiple-access (TDMA). Two-branch diversity reception is used to enhance the signal detection performance of ICE. In the experiments, BER performances were evaluated using the prototype system. Under a single-path Rayleigh fading and a single CCI condition, the ICE receiver attains the BER of less than 310-2 with the negative values of the average CIR: for fD = 5 Hz and 40 Hz, the average CIR more than -20 dB and -10 dB, respectively. Under a double-path Rayleigh fading and a single CCI condition, the ICE receiver attains the BER of less than 1.510-2 with the negative values of the average CIR: for fD = 5 Hz and 40 Hz, the average CIR more than -20 dB and -10 dB, respectively. The laboratory test results suggest that the ICE receiver has potential for system capacity enhancement.

  • A Transmitter Diversity with Desired Signal Power Selection Using Matched Filter

    Fumiaki MAEHARA  Fumihito SASAMORI  Fumio TAKAHATA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E84-B No:2
      Page(s):
    255-262

    The paper proposes a transmitter diversity scheme with a desired signal selection for the mobile communication systems in which the severe cochannel interference (CCI) is assumed to occur at the base station. The feature of the proposed scheme is that the criterion of the downlink branch selection is based on the desired signal power estimated by the correlation between the received signal and the unique word at the matched filter. Moreover, the unique word length control method according to the instantaneous SIR is applied to the proposed scheme, taking account of the uplink transmission efficiency. Computer simulation results show that the proposed scheme provides the better performance than the conventional transmitter diversity in the severe CCI environments, and that the unique word length control method applied to the proposed scheme decreases the unique word length without the degradation of the transmission quality, comparing with the fixed unique word length method.

  • Modified Gaussian Analysis Method of the OFDM System with the Frequency Offset

    Hongku KANG  Hyunjae KIM  Wooncheol HWANG  Kiseon KIM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:2
      Page(s):
    213-219

    We evaluate the BER performance of the OFDM system with the one-tap equalizer bank under the two-ray multipath channel with the frequency offset by the simple Gaussian analysis method and by a proposed modified Gaussian analysis method. The proposed analysis method considers two adjacent inter-channel interferences, separately, and models the other inter-channel interferences as a Gaussian noise. It is shown that the proposed analysis method affords much closer results to the simulations than those by the simple Gaussian analysis method, when the frequency offset exists.

41-60hit(86hit)